233 research outputs found

    Novel Decapeptides that Bind Avidly and Deliver Radioisotope to Colon Cancer Cells

    Get PDF
    The rapidly growing field of targeted tumor therapy often utilizes an antibody, sometimes tagged with a tumor-ablating material such as radioisotope, directed against a specific molecule.This report describes the discovery of nine novel decapeptides which can be radioactively labeled, bind to, and deliver (32)P to colon cancer cells. The decapeptides vary from one another by one to three amino acids and demonstrate vastly different binding abilities. The most avidly binding decapeptide can permanently deliver very high levels of radioisotope to the adenocarcinoma cancer cell lines at an efficiency 35 to 150 times greater than to a variety of other cell types, including cell lines derived from other types of cancer or from normal tissue.This experimental approach represents a new example of a strategy, termed peptide binding therapy, for the potential treatment of colorectal and other adenocarcinomas

    Phase I clinical study of the recombinant antibody toxin scFv(FRP5)-ETA specific for the ErbB2/HER2 receptor in patients with advanced solid malignomas

    Get PDF
    INTRODUCTION: ScFv(FRP5)-ETA is a recombinant antibody toxin with binding specificity for ErbB2 (HER2). It consists of an N-terminal single-chain antibody fragment (scFv), genetically linked to truncated Pseudomonas exotoxin A (ETA). Potent antitumoral activity of scFv(FRP5)-ETA against ErbB2-overexpressing tumor cells was previously demonstrated in vitro and in animal models. Here we report the first systemic application of scFv(FRP5)-ETA in human cancer patients. METHODS: We have performed a phase I dose-finding study, with the objective to assess the maximum tolerated dose and the dose-limiting toxicity of intravenously injected scFv(FRP5)-ETA. Eighteen patients suffering from ErbB2-expressing metastatic breast cancers, prostate cancers, head and neck cancer, non small cell lung cancer, or transitional cell carcinoma were treated. Dose levels of 2, 4, 10, 12.5, and 20 μg/kg scFv(FRP5)-ETA were administered as five daily infusions each for two consecutive weeks. RESULTS: No hematologic, renal, and/or cardiovascular toxicities were noted in any of the patients treated. However, transient elevation of liver enzymes was observed, and considered dose limiting, in one of six patients at the maximum tolerated dose of 12.5 μg/kg, and in two of three patients at 20 μg/kg. Fifteen minutes after injection, peak concentrations of more than 100 ng/ml scFv(FRP5)-ETA were obtained at a dose of 10 μg/kg, indicating that predicted therapeutic levels of the recombinant protein can be applied without inducing toxic side effects. Induction of antibodies against scFv(FRP5)-ETA was observed 8 days after initiation of therapy in 13 patients investigated, but only in five of these patients could neutralizing activity be detected. Two patients showed stable disease and in three patients clinical signs of activity in terms of signs and symptoms were observed (all treated at doses ≥ 10 μg/kg). Disease progression occurred in 11 of the patients. CONCLUSION: Our results demonstrate that systemic therapy with scFv(FRP5)-ETA can be safely administered up to a maximum tolerated dose of 12.5 μg/kg in patients with ErbB2-expressing tumors, justifying further clinical development

    Immunotoxin-Mediated Tract Targeting in the Primate Brain: Selective Elimination of the Cortico-Subthalamic “Hyperdirect” Pathway

    Get PDF
    Using a neuron-specific retrograde gene-transfer vector (NeuRet vector), we established immunotoxin (IT)-mediated tract targeting in the primate brain that allows ablation of a neuronal population constituting a particular pathway. Here, we attempted selective removal of the cortico-subthalamic “hyperdirect” pathway. In conjunction with the direct and indirect pathways, the hyperdirect pathway plays a crucial role in motor information processing in the basal ganglia. This pathway links the motor-related areas of the frontal lobe directly to the subthalamic nucleus (STN) without relay at the striatum. After electrical stimulation in the motor-related areas such as the supplementary motor area (SMA), triphasic responses consisting of an early excitation, an inhibition, and a late excitation are usually detected in the internal segment of the globus pallidus (GPi). Several lines of pharmacophysiological evidence suggest that the early excitation may be derived from the hyperdirect pathway. In the present study, the NeuRet vector expressing human interleukin-2 receptor α-subunit was injected into the STN of macaque monkeys. Then, IT injections were made into the SMA. In these monkeys, single-neuron activity in the GPi was recorded in response to the SMA stimulation. We found that the early excitation was largely reduced, with neither the inhibition nor the late excitation affected. The spontaneous firing rate and pattern of GPi neurons remained unchanged. This indicates that IT-mediated tract targeting successfully eliminated the hyperdirect pathway selectively from the basal ganglia circuitry without affecting spontaneous activity of STN neurons. The electrophysiological finding was confirmed with anatomical data obtained from retrograde and anterograde neural tracings. The present results define that the cortically-driven early excitation in GPi neurons is mediated by the hyperdirect pathway. The IT-mediated tract targeting technique will provide us with novel strategies for elucidating various neural network functions

    Pre-Clinical Evaluation of a 213Bi-Labeled 2556 Antibody to HIV-1 gp41 Glycoprotein in HIV-1 Mouse Models as a Reagent for HIV Eradication

    Get PDF
    Any strategy for curing HIV infection must include a method to eliminate viral-infected cells. Based on our earlier proof-of-principle results targeting HIV-1 infected cells with radiolabeled antibody (mAb) to gp41 viral antigen, we embarked on identifying a suitable candidate mAb for preclinical development.Among the several human mAbs to gp41 tested, mAb 2556 was found to have high affinity, reactivity with multimeric forms of gp41 present on both the surface of virus particles and cells expressing HIV-1 Env, and recognition of a highly conserved epitope of gp41 shared by all HIV-1 subtypes. Also, mAb 2556 was the best in competition with HIV-1+ serum antibodies, which is an extremely important consideration for efficacy in the treatment of HIV patients. When radiolabeled with alpha-emitting radionuclide 213-Bismuth ((213)Bi) - (213)Bi-2556 efficiently and specifically killed ACH-2 human lymphocytes chronically infected with HIV-1, and HIV-1 infected human peripheral blood mononuclear cells (hPBMCs). The number of binding sites for (213)Bi-2556 on the surface of the infected cells was >10(6). The in vivo experiments were performed in two HIV-1 mouse models--splenic and intraperitoneal. In both models, the decrease in HIV-1 infected hPBMCs from the spleens and peritoneum, respectively, was dose-dependent with the most pronounced killing of hPBMCs observed in the 100 µCi (213)Bi-2556 group (P = 0.01). Measurement of the blood platelet counts and gross pathology of the treated mice demonstrated the lack of toxicity for (213)Bi-2556.We describe the preclinical development of a novel radiolabeled mAb reagent that could potentially be part of an HIV eradication strategy that is ready for translation into the clinic as the next step in its development. As viral antigens are very different from "self" human antigens - this approach promises high selectivity, increased efficacy and low toxicity, especially in comparison to immunotoxins
    corecore